
LETTER Communicated by Paul Cisek

Sensitivity Derivatives for Flexible Sensorimotor Learning

M. N. Abdelghani
mohamed.abdelghani@utoronto.ca
Department of Physiology, University of Toronto, Toronto, Ontario, Canada

T. P. Lillicrap
tim@biomed.queensu.ca
Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario K7L 3N6,
Canada

D. B. Tweed
douglas.tweed@utoronto.ca
Departments of Physiology and Medicine, University of Toronto, Toronto,
Ontario M5S 1A8, Canada, and Centre for Vision Research, York University, Toronto,
Ontario M3J 1P3, Canada

To learn effectively, an adaptive controller needs to know its sensitivity
derivatives—the variables that quantify how system performance de-
pends on the commands from the controller. In the case of biological
sensorimotor control, no one has explained how those derivatives them-
selves might be learned, and some authors suggest they are not learned
at all but are known innately. Here we show that this knowledge cannot
be solely innate, given the adaptive flexibility of neural systems. And we
show how it could be learned using forms of information transport that
are available in the brain. The mechanism, which we call implicit super-
vision, helps explain the flexibility and speed of sensorimotor learning
and our ability to cope with high-dimensional work spaces and tools.

1 Introduction

In control theory, variables called sensitivity derivatives quantify how a sys-
tem’s performance depends on the commands from its controller (Åström
& Wittenmark, 1995). Knowledge of these derivatives is a prerequisite for
adaptive control, including sensorimotor learning in the brain, but it is
unclear how that knowledge could be acquired by neural controllers.

The pieces of the puzzle are these: any controller sends its commands
u to its controlled object (or plant), with the aim of reducing some error e.
For example, the vestibulo-ocular reflex (VOR) measures head rotation and
counterrotates the eyes to keep the retinal images stable, so its error e might
be retinal-image slip. In reaching, e might be the vector from target to hand.

Neural Computation 20, 2085–2111 (2008) C© 2008 Massachusetts Institute of Technology



2086 M. Abdelghani, T. Lillicrap, and D. Tweed

Figure 1: Error and sensitivity. Suppose an arm controller knows its vertical
reaching error ei (downward in this case) and the state of the arm. Still it cannot
tell how to improve the component u j of its motor command, or even whether
to increase u j or decrease it, unless it knows whether u j ’s effect is to raise or to
lower the hand; i.e., it needs the relation between ei and u j , which is ∂ei /∂u j ,
the sensitivity derivative. The same holds for any adaptive controller.

And similarly for any learned behavior (see section 2 and appendix A). If
the controller is adaptive, it can improve based on feedback about e, but to
do this, it needs to know the relation between e and u: it needs the matrix
∂e/∂u, called the control jacobian (Callier & Desoer, 1991), or the matrix
of sensitivity derivatives (Åström & Wittenmark, 1995). This matrix is the
crucial information that tells an adaptive controller how to improve based
on error feedback.

For example, suppose you design an adaptive controller for the arm, and
suppose that when the vertical component ei of reaching error is negative
(downward), the controller adjusts its weights so as to increase some com-
ponent u j of its motor command (see Figure 1). This decision, to increase
rather than decrease u j , means the controller believes an increase in u j will
drive ei in the positive direction, toward 0; i.e., it believes that ∂ei /∂u j >

0. In a similar way, any adaptive adjustment of any controller reflects an
assumption about sensitivity derivatives.

How can a controller get information about these derivatives? The fun-
damental question is whether they are learned or known innately. Recent
theories propose that the knowledge is innate (Porrill, Dean, & Stone, 2004;
Dean, Porrill, & Stone, 2002; Kawato & Gomi, 1992), or they do not dis-
cuss where it comes from (Todorov & Jordan, 2002; Yamamoto, Kobayashi,
Takemura, Kawano, & Kawato, 2002). But we will show that theories that
hold that this knowledge is solely innate cannot explain the versatility of
real sensorimotor learning—its capacity to recover from major lesions and
cope with complex tasks and tools. So sensitivity derivatives—the prereq-
uisites for sensorimotor learning—must themselves be learned. No theory



Sensitivity Derivatives for Flexible Sensorimotor Learning 2087

has explained how they could be learned, given the known forms of infor-
mation flow in the brain. We consider possible mechanisms and argue that
the best option is a process we call implicit supervision.

2 Mathematical Setting

We consider a control system with a plant equation,

ẋ = f (x, u), (2.1)

where x is the plant state, u is the command from the controller, and ẋ is
the time derivative, or rate of change, of x. We suppose that the aim of the
controller is to zero an error vector e, which is a function of u and a context
vector v,

e = g(v, u). (2.2)

More precisely, the aim is to minimize the risk, or expected loss, often
defined as E(L) = E(eT e/2). To achieve this goal, the controller reads in
context and generates commands according to a function called its control
law,

u = γ (v). (2.3)

2.1 Example. In the horizontal vestibulo-ocular reflex, x is eye position
relative to the head, u is the net motoneuron signal to the horizontal eye
muscles, and the plant equation (in a simplified form) is

ẋ = u − κx
ρ

, (2.4)

where κ and ρ are constants. e is the retinal-image slip velocity, which is the
sum of eye and head velocity,

e = ẋ + ḣ = f (x, u) + ḣ. (2.5)

And the context v is, by definition, everything besides u that affects e, so in
this case, v is a vector consisting of eye position x and head velocity ḣ. Then
e is a function of u and v, as required by equation 2.2. The optimal control
law is

u = κx − ρ ḣ = (κ,−ρ) · v, (2.6)



2088 M. Abdelghani, T. Lillicrap, and D. Tweed

because this u, plugged into equation 2.4, makes ẋ = −ḣ, and so zeroes the
error e defined in equation 2.5. As required by equation 2.3, u is a function
of v. And biologically, there is no difficulty making v available to the VOR
controller: ḣ signals can be delivered from the inner ear and eye position
feedback x from spindles or efference copy.

This example illustrates that the horizontal VOR fits the framework de-
fined in equations 2.1 to 2.3. That framework is quite general, encompassing
a wide range of sensorimotor control systems, though to fit the scheme, they
must be expressed in a form in which a quantity called relative degree is
zero. This issue is discussed in appendix A.

2.2 Sensitivity Derivatives. In the horizontal VOR, with the plant de-
scribed by equation 2.4 and the error by equation 2.5, the sensitivity deriva-
tive is a single number:

∂e
∂u

= ∂

∂u
(ẋ + ḣ) = ∂

∂u

(
u − κx

ρ
+ ḣ

)
= 1

ρ
. (2.7)

Most sensorimotor systems are more complex, and for them, the sensitivity
derivative is not a scalar constant but a matrix of functions. For some control
tasks involving a planar two-link arm, for instance, the matrix is

∂e
∂u

=
[
δ(α + β cos x2) −

(
δ + β cos x2

2

)2
]−1

×


 δ −δ − β cos x2

2
−δ − β cos x2

2
α + β cos x2


 , (2.8)

where α, β, and δ are constants and x2 is elbow angle. For a real arm, with
7 degrees of freedom, the matrix is more complex. And for tasks involving
many body parts, or tools or other props, or interactions with other agents,
it will be more complex again.

3 Sensorimotor Learning

To learn is to adjust your control law u = γ (v) so as to reduce e. Here
we show, with a simple example, how the proper adjustments depend on
the sensitivity derivatives. The principle holds for any sensorimotor task
fitting equations 2.1 to 2.3 and for any learning algorithm, but for illustration
purposes, we will choose the VOR and the Widrow-Hoff learning rule, also
known as online-gradient or least-mean-square (LMS) learning.



Sensitivity Derivatives for Flexible Sensorimotor Learning 2089

We will suppose the VOR controller has the form of the ideal controller
(see equation 2.6),

u = 〈κ〉x − 〈ρ〉ḣ, (3.1)

where the small corner brackets 〈〉 indicate neural estimates, so 〈κ〉 and 〈ρ〉
are parameters that are shaped, by learning, to equal the κ and ρ in the
plant equation, 2.4. In this setting the LMS learning rule is described by the
following equations, where η is the learning rate constant:

d〈κ〉
dt

= −η
∂L
∂〈κ〉 = −η

d L
du

∂u
∂〈κ〉 = −η

d L
de

∂e
∂u

∂u
∂〈κ〉 = −ηeT ∂e

∂u
x (3.2)

d〈ρ〉
dt

= −η
∂L
∂〈ρ〉 = −η

d L
du

∂u
∂〈ρ〉 = −η

d L
de

∂e
∂u

∂u
∂〈ρ〉 = ηeT ∂e

∂u
ḣ. (3.3)

Clearly this learning rule requires knowledge of the sensitivity derivative
∂e/∂u. (In the VOR, as we have seen, ∂e/∂u = 1/ρ, so an estimate of ∂e/∂u
is at the same time an estimate of 1/ρ, but notice that the estimate 〈∂e/∂u〉
is physically a different thing from the controller parameter 〈ρ〉, so 〈∂e/∂u〉
is not necessarily equal to 1/〈ρ〉.)

Now suppose the controller parameters 〈κ〉 and 〈ρ〉 are incorrect (i.e.,
they do not equal κ and ρ), as in the early part of the time plot in Figure 2A.
Then eye velocity ẋ is incorrect, and e is nonzero. But the learning rule in
equations 3.2 and 3.3 repairs the problem: as long as the estimate 〈∂e/∂u〉
is reasonably accurate, 〈κ〉 and 〈ρ〉 converge to their correct values, and ẋ
comes to match −ḣ.

What is a “reasonably accurate” estimate of the sensitivity derivative?
Usually if 〈∂e/∂u〉 is, say, 10 times larger or smaller than the true ∂e/∂u, then
learning will still proceed, though 10 times faster or slower than usual—as if
the learning rate constant η were scaled up or down. But large misestimates
of this type can cause problems—instability or uselessly slow learning.

And errors in the sign of 〈∂e/∂u〉 will be disastrous. If the sign of 〈∂e/∂u〉
is opposite the sign of the true ∂e/∂u, then the learning rule will drive 〈κ〉
and 〈ρ〉 in the wrong directions, making the error worse and worse, as in
Figure 2B. Equations 3.2 and 3.3 reveal the central problem: a reversal in
∂e/∂u causes a reversal in ∂L/∂u, which means the controller’s estimates
of ∂L/∂〈κ〉 and ∂L/∂〈ρ〉 have the wrong signs, so 〈κ〉 and 〈ρ〉 are driven up
rather than down the gradient of the loss function.

The horizontal VOR is one-dimensional, but in multidimensional prob-
lems, the principle is the same except that the signs of ∂e/∂u and ∂L/∂u
need not correspond one-to-one. If e is a vector of more than one com-
ponent, then ∂L/∂u is the matrix product eT (∂e/∂u), so it is possible that
several components of ∂e/∂u may reverse without reversing ∂L/∂u, and



2090 M. Abdelghani, T. Lillicrap, and D. Tweed

Figure 2: When sensitivity derivatives are not learned, control is inflexible.
(A) In the VOR, eye velocity (solid black line) should equal –1 × head velocity
(dotted black). Here a controller with correct innate knowledge of sensitivity
learns the task. (B) Here the trained controller is working well until, at time step
250, sensitivity (dotted gray line) switches sign (this could be achieved by trans-
posing eye muscles). The switch makes the controller’s innate estimate 〈∂e/∂u〉
(solid gray line) incorrect, so 〈∂L/∂u〉 is also reversed and drives learning in the
wrong direction. The system never recovers. (Ordinate scale refers to velocities,
not sensitivity derivatives.)

conversely, ∂L/∂u may reverse without any component of ∂e/∂u doing so.
In any adaptive control task of any dimension, the crucial thing is that no
element of 〈∂L/∂u〉 should have the wrong sign.

This principle is general: a sign error in any component of 〈∂L/∂u〉
will reverse learning in any adaptive controller. And with fast learning
algorithms, even scaling errors may seriously slow or disrupt learning. So
adaptive controllers in the brain need to know their sensitivity derivatives.
How do they do it?

4 Are Sensitivity Derivatives Innately Known or Learned?

Theoretically innateness and learning both have their own pros and cons.
If sensitivity derivatives are not learned, then the system can get by with
a simpler learning algorithm, and it will often still adapt eventually to
changes in the plant that do not reverse any component of ∂L/∂u. But if
any element of ∂L/∂u ever does change sign, the system will be helpless,
as all its attempts at adaptation will just make things worse. If sensitivity
derivatives are learned, then the learning algorithm will have to be more



Sensitivity Derivatives for Flexible Sensorimotor Learning 2091

sophisticated, but the system will adapt to a far wider range of conditions,
and it will have other advantages, which we discuss later.

4.1 Current Theories. What do the leading theories of sensorimotor
learning say about sensitivity derivatives? Most do not mention them: in
their simulations, they assume the derivatives are known, without dis-
cussing how. But a few articles do posit fairly explicitly that knowledge of
∂e/∂u is innate (Kawato & Gomi, 1992; Porrill et al., 2004; Dean et al., 2002).

There are many theories of plasticity in the VOR, but none explains how
sensitivity derivatives could be learned, so they predict that the VOR will
never recover when ∂L/∂u reverses sign, as in Figure 2B. Many of these
theories do explain our adaptation to reversing spectacles, but spectacles
do not reverse the sign of ∂L/∂u: they alter the relation between retinal
image slip and head motion, but not the relation between slip and motor
commands. For example, if, while wearing reversing glasses, you see your
visual world slipping rightward, then the correct response is still the usual
one: rotate your eyes faster to the right. To reverse the relation between
slip and command, an experimenter could transpose the eye muscles, or
put in reversing contact lenses, or use a virtual reality setup where one
measures eye movement and programs the visual scene to rotate, as a
function of eye motion, as if the subject were wearing reversing contacts. So
far as we are aware, no one has carried out this experiment, and no previous
theory predicts that the VOR would recover under these conditions. (On the
other hand, reversing prisms do reverse ∂L/∂u in tasks involving skeletal
movements like reaching, as we discuss in section 4.2.)

In the general learning theory of Kawato and colleagues, information
about sensitivity derivatives is built into an innate controller and delivered
by it to an adaptive controller. This point is clear in their early work (Kawato
& Gomi, 1992): they do not mention ∂e/∂u by name, but they call for an
innate controller that works at least half-decently, which means it responds
to errors in an appropriate way, given the ∂e/∂u of its plant. So the innate
controller contains information about ∂e/∂u.

Later articles from this same lab focus on other issues, but they work
similarly regarding ∂e/∂u. For example in Yamamoto et al. (2002), synaptic
change depends on unlearned constants that carry information about ∂e/∂u.
Kawato and colleagues have a specific theory of VOR adaptation, developed
in the 1990s but still in use in recent work such as Shibata, Tabata, Schaal,
and Kawato (2005). Simulations of that theory, applied to the same tasks as
those in Figure 2, are indistinguishable from the plots in that figure—it fails
to recover from a reversal in ∂e/∂u. On the other hand, if this theory were
supplemented with a mechanism for learning sensitivity derivatives, then
it would recover; in other words, this sort of simulation does not challenge
any aspect of Kawato’s theory except its reliance on innate estimates of
∂e/∂u.



2092 M. Abdelghani, T. Lillicrap, and D. Tweed

A more recent general theory of motor learning, developed by Porrill
et al. (2004), similarly relies on innate estimates. Applied to the VOR, it
too reproduces the behavior in Figure 2. And as with Kawato’s theory, this
one could be made flexible by adding a mechanism that learns sensitivity
derivatives.

Another example is work by Todorov and colleagues on the LQG frame-
work for motor control (e.g., Todorov & Jordan, 2002). Their algorithms for
shaping motor control sequences are not presented as biologically feasible,
but still they illustrate that knowledge of ∂e/∂u is needed to shape a con-
troller. In these papers, a central role is given to a matrix B (or Bk), which
is not itself learned but is assumed to be known. B is defined to be ∂x/∂u,
where x is the plant state, so if we give the name x∗ to the optimal state (at
some moment in the trajectory) and let e = x – x∗, then B = ∂e/∂u.

4.2 Experimental Evidence. If knowledge of sensitivity derivatives
were solely innate, then any major change in the plant—any change that
caused the controller’s estimate of ∂L/∂u to have the wrong sign—would
cause learning to become counterproductive, strengthening those com-
mands that should be weakened and vice versa. But a long series of studies,
going back to G. M. Stratton in the 1890s, shows that real learning, in at
least some sensorimotor systems, does not become counterproductive when
a component of ∂L/∂u changes sign.

For instance, people can learn to mirror-draw, or live with reversing
goggles, even though the mirror and goggles reverse the relation between
visual error and motor commands (Stratton, 1897; Ewert, 1930; Sugita, 1996).
Similarly, when antagonist muscles or nerves are transposed, then the re-
lation between motor commands and motion is reversed, but animals can
regain their coordination (Sperry, 1945; Missiuro & Kozlowski, 1963; Vera,
Lewin, Kasa, & Calderon, 1975; Leffert & Meister, 1976; Yumiya, Larsen, &
Asanuma, 1979; Brinkman, Porter, & Norman, 1983).

Another example, involving not a reversal but a drastic qualitative
change in ∂L/∂u, is facial palsy treated by hypoglossal nerve transposi-
tion. In these cases, the facial nerve is damaged, so surgeons cut it and
attach to its stump a branch of the nerve to the tongue. In this way, errors
in facial motion become associated with motor commands in the hypoglos-
sal nerve, which formerly had no effect at all; that is, ∂e/∂u was formerly
zero. Right after the operation, patients move their faces whenever they try
to move their tongues, but in time they learn to control face and tongue
independently. So this is another case where the brain copes well with an
extreme change in ∂L/∂u.

Not all controllers recover when ∂L/∂u reverses, and in particular small
brains do not always cope well. For example, in 1943, Sperry rotated the
eyes of some newts upside down, so food sighted in their lower visual fields
could now be reached only by moving up. The newts never learned the new
arrangement, even over 4 months. Success on these tasks appears to vary



Sensitivity Derivatives for Flexible Sensorimotor Learning 2093

Figure 3: How could controllers learn sensitivity derivatives? As Jordan and
Rumelhart (1992) showed, a plant model contains information about sensitivity
derivatives, but normally the information is distributed among the synaptic
weights of the model. Unless that information is represented in neural firing,
how can it be transmitted to the controller?

from species to species. On the tasks that have been tested, it seems that pri-
mates adapt consistently, cats and rats show mixed results, and newts never
recover (Ewert, 1930; Sperry, 1943, 1945; Vera et al., 1975; Leffert & Meister,
1976; Yumiya et al., 1979; Brinkman et al., 1983; Forssberg & Svatengren,
1983; Sugita, 1996). So maybe simple organisms do rely solely on innate
estimates of sensitivity. And it is possible that simple or primitive subsys-
tems of large brains do the same. In this regard, it would be interesting
to study the human response to reversed ∂L/∂u in a simple system like
the VOR.

But it is clear that in at least some sensorimotor systems, learning is
flexible in the sense that it can deal with reversals in ∂L/∂u. We have looked
at simple examples involving limb and tongue movements, because in them,
the commands and loss functions are fairly easy to identify, but flexibility
becomes even more vital in more complex control systems, because with
more components in ∂L/∂u, there is a greater risk that some component will
change sign—and again, reversal in even one component will confound
forever an inflexible learner. For example, if u is 10-dimensional, then an
inflexible learner can adapt to only 2−10, or ∼0.1%, of all possible values
of the partial derivative of the loss with respect to u. This calculation, and
the experimental data, indicate that in a complex, changing world, survival
depends on learning sensitivity derivatives.

4.3 Learning Sensitivity. Given this fact, we have to address what has
long been the major objection to learned sensitivity: the lack of a feasible
learning mechanism (Kawato & Gomi, 1992). Jordan and Rumelhart (1992)
have suggested an approach called the distal teacher, which we show in
Figure 3. In this method, one introduces a device called a plant model,
which receives the same inputs as the plant and learns to simulate its
behavior. The output of the model is compared with the output of the real
plant, and the difference is called the model error, ē, because it measures how
well the model is doing its job of mimicking the plant. The model error is
fed back to the model, where it alters the synapses, improving performance.



2094 M. Abdelghani, T. Lillicrap, and D. Tweed

Once the model has been trained (once it has become a faithful simulation
of the plant), it contains a lot of information about the plant, including the
sensitivity derivatives, which it sends to the controller. And with ∂e/∂u in
hand, the controller can learn its job.

But distal teachers have not caught on, because in Jordan and Rumel-
hart’s implementation, the information about sensitivity was distributed
among the firing patterns and synaptic weights of the model. To get that
information to the controller, then, one needed fast weight transport—
rapid transmission of information about synapses to other, remote synapses
(see Figure 3). This kind of transport is biologically implausible (Mazzoni,
Andersen, & Jordan, 1991; Kawato & Gomi, 1992; Rolls & Deco, 2002), which
is why recent theories have instead suggested that knowledge of sensitivity
derivatives is innate. We will show that there are ways sensitivity deriva-
tives could be learned using only biologically realistic forms of information
transport. We start in the next section with the mechanism we consider
most promising—essentially a version of the distal teacher without weight
transport—and then consider other approaches.

5 Implicit Supervision

5.1 The Basic Idea. We want a plant model that represents sensitivity
derivatives not in its synaptic weights but in its neural firing, so they are
available to be transmitted wherever they are needed, such as to adap-
tive controllers. The problem is that there is no supervisor to train such a
model—no signal to tell it the true values of the sensitivity derivatives. But
no supervisor is needed if we relate the unknown sensitivity derivatives to
known variables. If we define z = (v, u), then we can write

e = g(v, u) = g(z). (5.1)

The point is to provide a single vector, z, which determines e. As defined
in example 2.1, the context vector v is everything besides u that is needed
to determine e, so by definition, e is a function of z, the combination of v

and u. In the VOR, for example, z contains information about the motor
command, eye position, and head velocity. In reaching, z includes motor
commands, target locations, and the angles and velocities of the joints.

By the chain rule,

ė = de
d z

ż. (5.2)

We can reasonably assume that the rates of change ė and ż are known to the
plant model because they can be computed from e and z. The model’s aim,
then, is to deduce the unknown derivative matrix de/d z, which contains as
a submatrix the sensitivity derivatives ∂e/∂u.



Sensitivity Derivatives for Flexible Sensorimotor Learning 2095

Figure 4: Implicit supervision creates a network that represents sensitivity
derivatives in transmissible form. Here z is a vector containing information
about the context v and command u, and ϕ is a function of z. This circuit learns
to code the total derivative de/d z in neural firing. Because de/d z contains the
sensitivity ∂e/∂u as a submatrix, all components of the estimate 〈∂e/∂u〉 are
coded in a subset of the axons carrying 〈de/d z〉. So this scheme can deduce
sensitivity derivatives and transmit them to a controller.

We want a network that learns to compute de/d z. What sort of input
does it need? By equation 5.1, we know e is determined by z, so de/d z
is computable from z as well. In most systems, the function relating z
and de/d z is nonlinear, so the simplest way to get a useful input is by
expansion recoding z (Rolls & Deco, 2002), sending it through an array of
nonlinear functions ϕi to yield a feature vector ϕ(z)—ϕ, for short. Then we
approximate each element of the matrix de/d z by taking the inner product
of ϕ with a weight vector w,

∂ei

∂z j
≈ w�

i j ϕ =
nϕ∑

k=1

wi jkϕk, (5.3)

as in Figure 4.
Expansion recoding and feature vectors appear also in many other theo-

ries that strive for biological realism (Rolls & Deco, 2002; Kawato & Gomi,
1992; Yamamoto et al., 2002), and there are many ways to choose the fea-
tures, ϕi . If you know beforehand that certain features are well suited for
your task, then it makes sense to choose them; for example, if you know that
the sensitivity derivatives are quadratic functions of z, choose quadratic fea-
tures. If you do not have much prior knowledge, then more generic features
also work, so long as you have a large and varied set of them. In this letter
we take both approaches to feature selection: handpicking for the VOR,
generic for our simulations of a two-joint arm. For the VOR, the sensitivity
derivative is a single, constant scalar, so we choose a single, constant fea-
ture: ϕ = 1. For the arm model, we make no attempt to select apt features
but simply put z through an array of up to 25 hyperbolic tangent neurons,
with random, fixed (nonlearning) synaptic weights w f , to yield a ϕ vector



2096 M. Abdelghani, T. Lillicrap, and D. Tweed

with components

ϕi = tanh


 nz∑

j=1

w f i j z j


 . (5.4)

One concern with all expansion-recoding schemes is that complex tasks
call for many features. No one knows how many, chosen from this or that
generic set, are needed for realistic sensorimotor control, but if the number
turns out to be implausibly large, we can invoke several mechanisms to
create smaller sets; for example, features could be shared between senso-
rimotor systems, useful features could be built into the brain from birth
by natural selection, or they could be shaped by learning upstream from
W. And similarly, upstream learning could also provide an efficient, low-
dimensional z.

Given a feature vector, learning becomes a matter of finding the weights
wi jk that yield the best approximations to ∂ei/∂z j . Again, there is no super-
visor coding the true values of ∂ei/∂z j , but from equation 5.2, we know that
if we adjust the wi jk so that the product 〈de/d z〉ż is close to ė for a wide
range of ż vectors, then we will have 〈de/d z〉 ≈ de/d z.

What is the learning rule that will achieve this goal? We define a model
error,

ē = 〈ė〉 − ė = 〈de/d z〉ż − ė, (5.5)

and model loss,

L̄ = ē� ē
2

. (5.6)

To minimize this loss, we want to adjust each wi jk down the gradient:

∂ L̄
∂wi jk

= ∂ L̄
∂ ē

∂ ē
∂wi jk

= ē� ∂ ē
∂wi jk

=
ne∑

α=1

ēα

∂ ēα

∂wi jk

=
ne∑

α=1

ēα

∂

∂wi jk
([〈de/d z〉ż − ė]α) (by equation 5.5)

=
ne∑

α=1

ēα

∂

∂wi jk


 nz∑

β=1

〈deα/dzβ〉żβ




(omit − ė, as it doesn’t depend on wi jk)



Sensitivity Derivatives for Flexible Sensorimotor Learning 2097

= ēi
∂

∂wi jk
(〈dei/dzj 〉ż j )

(〈deα/dzβ〉 depends on wi jk only if α = i,β = j)

= ēi
∂

∂wi jk


 nϕ∑

γ=1

wi jγ ϕγ ż j


 (by equation 5.3)

= ēi
∂

∂wi jk

(
wi jkϕk ż j

)
= ēi ż jϕk, (5.7)

where the notation [ ]α means component number α of the vector in the
square brackets. So a simple learning rule would be

ẇi jk = −ηēi ż jϕk . (5.8)

This rule requires no weight transport, as all the variables are either present
in the synapse automatically (wi jk , η and ϕk) or rapidly transmissible there
because they are coded in neural firing (ēi and ż j ). Figure 4 shows ē arriving
at the weight array W. To avoid clutter here and in Figure 5, we do not show
ż being sent to W, but ż is present and coded in action potentials, so it can
be delivered to W by axon collaterals.

Equation 5.8 is a variant of the LMS learning rule (Haykin, 2002), though
it differs from most applications of LMS in that it uses a supervisor to
train its output 〈ė〉, but only as a means of driving certain of its internal
signals to equal a different, supervisorless variable, namely, de/d z. We call
this mechanism implicit supervision, because ė acts as a kind of indirect
supervisor to train the network to compute de/d z.

Many other learning rules besides LMS can be used for implicit super-
vision. In our simulations of implicit supervision in this letter we use a rule
called normalized least mean square (NLMS) (Nagumo & Noda, 1967):


wi jk = −η
ēi ż jϕk

(ż� ż)(ϕ�ϕ)
. (5.9)

The simulations run in discrete time, so here 
wi jk is the change in weight
wi jk in the current time step. An advantage of NLMS over LMS is that it
converges as fast but is less fussy about input statistics. That is, to get good
convergence with LMS, you have to choose a suitable learning rate constant
η, and the optimal η depends on the variances of the inputs to the network.
But with NLMS, the optimal η is 1, regardless of input variance. (In Figures
2B and 6A of this letter, we deliberately chose a suboptimal rate constant,
setting η equal to 0.01 to slow down the learning and make the different
stages more visible. In all the other figures showing implicit supervision,



2098 M. Abdelghani, T. Lillicrap, and D. Tweed

Figure 5: Control by implicit supervision. The circuit from Figure 4, incorpo-
rated at the lower right in this flow diagram, serves as a plant model that learns
to represent ∂e/∂u in neural firing and sends the information to the controller.

we used the optimal η.) Another possible learning rule, which we did not
use in this letter but may be viable in the brain, is the recursive least-squares
algorithm (RLS), which is faster than LMS and NLMS, though also more
complex (Haykin, 2002).

However it is implemented, the idea behind implicit supervision is quite
general: to compute a variable for which there is no supervisor, relate it to
another variable that does have a supervisor, and build a circuit that reflects
the known relation between the two. Then as one signal converges to the
supervisor, another converges to the variable you want.

Applied to sensorimotor learning, the idea looks like Figure 5. The lower
part of the circuit serves as a plant model, and because it codes de/d z and
therefore 〈∂e/∂u〉 in its firing, not in its weights, it can rapidly transmit that
information to the controller.

The flexibility of this scheme is illustrated by simulations in Figure 6:
unlike those controllers whose knowledge of sensitivity is solely innate,
those trained by implicit supervision can recover when 〈∂e/∂u〉 changes so
as to reverse the sign of some component of ∂L/∂u.

Figure 7 illustrates two further points regarding implicit supervision. The
first is that the plant model computes not a single, fixed de/d z matrix but a
function that takes u and v to de/d z, so it still works when de/d z varies as a
function of u and v. This point follows from our equations in section 5, and
Figures 7A and 7B provide an example: the sensitivity derivatives change
as the arm moves about its work space, but the plant model’s estimates
continues to track them. The second point is that an adaptive controller does
not need the exact values of the sensitivity derivatives, but only the signs of
all components of ∂L/∂u, as we discussed in section 3. It follows, then, that
noise on the model’s estimate of ∂e/∂u will not prevent learning so long as
the estimated sign of ∂L/∂u is correct. Figure 7C provides an example: the
model reports only the signs of both components of ∂L/∂u, but even with
this limited information, the controller gradually learns its job.

5.2 Redundancy and Constraints. Figure 8 shows that implicit super-
vision can deal with kinematic redundancy, that is, situations where the



Sensitivity Derivatives for Flexible Sensorimotor Learning 2099

Figure 6: Implicit supervision provides flexible adaptive control. (A) As in
Figure 2B, the sensitivity derivative switches sign at time step 250, but here
the controller learns in the wrong direction only until time step 628, when the
learned estimate 〈∂e/∂u〉 (the rising solid gray line) crosses zero, regaining the
correct sign, and thereafter control recovers. (B) The same method works for a
more complex task: we see shoulder and elbow angles (gray and black solid
lines) and their targets (dotted) as a two-joint arm learns to reach. At time step
4000, all components of sensitivity change sign, as if antagonist muscles were
transposed at both joints, but control recovers. For details of the arm simulation,
see appendix B.

plant has more degrees of freedom than it needs for its task. In Figure 8A,
the task is to control a two-joint arm so that the angle of the forearm in
space (which is the sum of the shoulder and elbow joint angles) matches
some target value. The system is redundant because it uses two joints to
control a single number, the orientation of the forearm. As shown in Fig-
ure 8A, the controller learns to drive the forearm (dashed line) to its target
(dotted line). The angles of the individual joints—the elbow in black and
the shoulder in gray—wander about, even when their sum, the forearm
angle, is being held steady, as one would expect, because the controller is
concerned only with the forearm and cares not at all about the individual
joints. Such complete indifference would be unlikely in a real sensorimotor



2100 M. Abdelghani, T. Lillicrap, and D. Tweed

Figure 7: Properties of implicit supervision. (A) A controller learns to move
the horizontal and vertical components of hand location (black and gray solid
lines) to their targets (dotted), even though the sensitivity derivatives change
through the work space. (B) The plant model’s estimates (solid lines) of all four
sensitivity derivatives track the true values (dotted). Specifically, if e1 is the
horizontal component of hand location error and e2 is the vertical, and u1 and u2

are the motor commands to shoulder and elbow, then ∂e1/∂u1 is the thick black
line, ∂e1/∂u2 the thin black, ∂e2/∂u1 the thick gray, and ∂e2/∂u2 the thin gray.
(C) Control eventually becomes accurate even when the controller receives only
the signs of the elements of ∂L/∂u.

system, because it permits the individual joints to wander without bound,
or to knock against their mechanical stops, impairing performance. A more
plausible controller might constrain the redundant variables, as in Figure
8B, where the controller learns to orient the forearm, as before, but now
prefers configurations where shoulder and elbow angles are equal. Figure
8C shows another version, which prefers to hold the elbow near 15 de-
grees of flexion. This last case is closely analogous to the control of saccadic
eye movements, where each eyeball has 3 degrees of freedom—horizontal,
vertical, and torsional—but needs only 2, and so Listing’s law of the eye
holds ocular torsion near 0 degrees (Tweed, Misslisch, & Fetter, 1994). In-
terestingly, Figure 8C shows small fluctuations of the elbow angle when the
target moves, like the blips seen in ocular torsion during saccades (Tweed
et al., 1994). These blips may arise for the same reason in Figure 8C and in
real saccades—the constraint has been imperfectly learned.



Sensitivity Derivatives for Flexible Sensorimotor Learning 2101

Figure 8: Implicit supervision can cope with kinematic redundancy. (A) The
task is to control shoulder and elbow so as to bring the forearm’s angle relative
to space (dashed line) to a target value (dotted line). The controller learns the
task but allows the angles of the individual joints—the elbow in black and the
shoulder in gray—to wander. (B) A controller learns to orient the forearm, as
before, but with a more complex error signal that prefers arm configurations
where shoulder and elbow angles are equal. (C) Another version prefers to hold
the elbow near 15 degrees of flexion.

5.3 Convergence, Speed, and Neurons. It is straightforward to show,
by Lyapunov’s second method, that model error ē converges to zero (so
long as zero error is attainable, given the feature vector ϕ). The Lyapunov
proof does not say how quickly the error declines, because the rate depends
on the sequence of input vectors z. Using methods from Gardner (1984) and
Werfel, Xie, and Seung (2005), we can prove that learning time is roughly
proportional to the product nznϕ , or, in other words, to the number of
adjustable weights divided by the number of elements of e. But this method
of proof relies on assumptions about the statistics of the network’s input
signals, which are unrealistic in a sensorimotor setting. We can do better if
we revise our learning rule: instead of deriving it from LMS or NLMS, as in
equations 5.8 or 5.9, we can base it on recursive least squares (RLS; Haykin,
2002). The RLS version of implicit supervision will normally converge over



2102 M. Abdelghani, T. Lillicrap, and D. Tweed

a time interval that is proportional to nznϕ , given realistic signal statistics.
But if we stick to our simpler NLMS-based learning rule from equation
5.9, we can still get an impression of learning speed by using simulations
as in Figures 6B, 7A, 7B, 8A, 8B, and 8C. In these figures, learning runs
much faster than in real life, but the speed is a welcome feature, because
learning would slow down if the simulations were made more complex,
with realistic numbers of neurons and degrees of freedom. We need fast
convergence to explain how real sensorimotor systems learn as quickly as
they do, given their complexity.

As for neurons, the method in its most straightforward implementation
calls for nϕ cells to compute the feature vector ϕ and nenz more to carry the
elements of 〈de/d z〉, plus smaller numbers of other neurons for other tasks.

6 Other Approaches

There are other mechanisms besides implicit supervision that could learn
sensitivity derivatives for sensorimotor control, though the literature offers
only a few alternatives, because it contains very few algorithms that ad-
dress our question; i.e., that are flexible in the sense that they recover from
reversed sensitivity derivatives, that deal with nonlinear plants and with
states and commands that are real-valued vectors rather than elements of
finite sets, and that transport information in a way that is feasible for bio-
logical neural networks. So far as we know, the only algorithms that fulfill
these conditions belong to just two classes: Boltzmann-like mechanisms
and some forms of reinforcement learning (Sutton & Barto, 1998) called
perturbation methods.

In the case of Boltzmann machines, for our purposes they would appear
to need two “clamped” states rather than their usual one, adding com-
plexity (Ackley, Hinton, & Sejnowski, 1985; Rolls & Deco, 2002). Further,
any clamping would interrupt the controller, and this seems unlikely for
sensorimotor systems, which continue working while they learn. But some
newer variants of the Boltzmann machine (e.g., Hinton, Osindero, & Teh,
2006) may avoid these problems.

6.1 Perturbation. The most promising alternative to implicit supervi-
sion may be the reinforcement-learning method known as node pertur-
bation (Werfel et al., 2005), which works by taking two stabs at the same
problem and seeing which did better. In a control setting, it would look like
this: a controller computes a command u, for example,

u = w · ϕ(v), (6.1)

where ϕ is a feature vector derived from the context v. This u is sent to
the plant where, together with v, it determines the loss, L. Immediately
thereafter, before the context has had a chance to change, the controller



Sensitivity Derivatives for Flexible Sensorimotor Learning 2103

Figure 9: A controller learns by command perturbation to reach for targets, but
the learning is slow compared to implicit supervision in Figure 6A. This plot
shows the final 8000 time steps of a million-step run, when elbow control (black)
is fairly good but the shoulder (gray) is still ragged.

emits a randomly perturbed command up, resulting in a slightly different
loss, Lp. Then the controller adjusts its weights according to the learning
rule,

ẇi = −η(L p − L)(up − u)ϕi . (6.2)

Here the quantity (L p − L)(up − u)—an estimate of ∂L/∂u or, in other
words, of e�∂e/∂u—carries information about sensitivity derivatives to
the controller. The method may require fewer neurons than implicit
supervision—essentially just the nϕ cells that compute the controller’s fea-
ture vector ϕ.

But there is a problem: in a control setting, it is impossible to take two
stabs at exactly the same problem, because the context is always in flux. It
is impossible to send out a second command up before v has evolved, if
only because the first command, u, itself alters v. So if, for instance, Lp is
smaller than L, it need not mean that up is a better command than u; it may
be a worse command delivered in a more favorable context. As a result, (Lp

– L)(up – u) is a poor estimate of ∂L/∂u, and the controller learns far more
slowly than with implicit supervision.

We can improve the method by sending u alone to the real plant but
both u and up, one after the other, to a plant model. That way, the simulated
context vector v driving the model really can be made identical for both
commands. Then (Lp – L)(up – u) is a better estimate of ∂L/∂u, and the
controller learns faster. But it is still far slower than with implicit supervi-
sion, as you can see by comparing Figure 9 to Figure 6B. So this method
seems unsuited for complex sensorimotor tasks, though it may be viable in
settings where learning quickly is less important than getting by with few
neurons.



2104 M. Abdelghani, T. Lillicrap, and D. Tweed

6.2 Loss-Based Implicit Supervision. In equations 5.2 to 5.9 we de-
scribed implicit supervision as a method of estimating de/d z, but we can
instead use the same ideas to estimate the loss-derivative dL/d z. As the loss-
derivative vector has fewer elements than the error-derivative matrix, we
need fewer neurons to carry the estimates—just nz rather than nenz. But the
components of dL/d z tend to be more complex functions of z than are the
components of de/d z, so we need more features (more components in the
vector ϕ) and more neurons to compute them. To judge from simulations,
loss-based implicit supervision appears less efficient than the error-based
version.

6.3 Distal Teacher. Jordan and Rumelhart’s distal teacher method is
roughly as fast and general as implicit supervision. Its only flaw is that
in its one detailed formulation (Jordan & Rumelhart, 1992), it relies on
rapid weight transport, which is biologically implausible. But implicit su-
pervision can be viewed as a distal teacher method that works without
weight transport. Figures 3 and 5 display the similarity between the two
approaches: the chain of operators comprising ϕ, W, and the multiplier in
Figure 5 forms a plant model, and plays the same role as the plant model
in Figure 3 (Jordan and Rumelhart’s model represents plant state x rather
than error e = x – x∗, but this is a minor difference of formulation).

7 Other Advantages of Learned Sensitivity

Whatever the algorithm that underlies it, an ability to learn sensitivity
derivatives brings some functional advantages besides flexibility.

7.1 Fast-Learning Controllers. In Figure 7 we saw that even very rough
estimates of sensitivity derivatives can be used to train a controller. But, the
more exactly ∂e/∂u is known, the faster the controller can learn—compare
the rapid improvement in Figure 6B with the slow progress in Figure 7C.
So for this reason also, natural selection may have favored mechanisms for
deducing ∂e/∂u.

7.2 Learning Complex Plants. We have cited evidence for learned sen-
sitivity from lesion studies, but learned sensitivity is useful even in the
absence of lesions altering the sensitivity derivatives, because those deriva-
tives will change naturally depending on context and commands. Consider
a human arm, with 7 degrees of freedom. If e3 is the vertical component of
reaching error—the vector from target to fingertip—and u2 is a command
for wrist flexion, then ∂e3/∂u2 is positive when the elbow is supinated and
negative when it is pronated—that is, wrist flexion moves your fingertips
upward in the one case and downward in the other, so the relation be-
tween the flexion commands and visual error reverses, depending on the
state of the elbow. Figure 10 gives an impression of how complex these



Sensitivity Derivatives for Flexible Sensorimotor Learning 2105

Figure 10: Sensitivity derivatives vary depending on context. (A) A map of
∂e3/∂u2—the derivative of vertical reaching error with respect to wrist-flexion
commands—versus shoulder pitch and wrist flexion, for a 7-DOF stepper-motor
arm. The derivative is represented by the gray level, or lightness, of the contours
(not of the dots, which are all black). The thick gray line marks zero. (B) A
different derivative, ∂e3/∂u5 (vertical error with respect to shoulder roll) plotted
relative to the same joint angles, shoulder pitch, and wrist flexion. (C) Effect of
tools: ∂e3/∂u5 again, plotted relative to the same joint angles, but now e3 is the
vertical error from the target to the tip of a handheld stick.

dependencies can be. It is based on a simplified “stepper-motor” arm,
where u is a vector of seven commands that directly determine joint an-
gles (in a real arm, u would have many more components and would affect
the angles indirectly through the nonlinear dynamics of the muscles, so the
relations would be even more complex). With the stepper arm, ∂e/∂u is a
3-by-7 matrix. Figure 10A shows a map of one component, ∂e3/∂u2 (repre-
sented by contour lines), versus two joint angles. The derivative varies in a
complicated way depending on arm position.



2106 M. Abdelghani, T. Lillicrap, and D. Tweed

To be able to learn in all contexts, the controller has to know this map
of derivatives versus context. Might the map be known innately, from the
genome? Not likely, because it is complex: even with this simplified, stepper
arm, the state space is 7D. Through each point in the space, there are 21
orthogonal 2D slices, and over each slice, each of the 21 components of
∂e/∂u varies in a different way (compare Figures 10A and 10B). With a real,
nonstepper arm, the maps would be more complex, and the principle holds
for sensorimotor tasks generally: u and v are usually high-dimensional, and
the sensitivity derivatives vary over most of these dimensions.

Moreover, real sensorimotor plants involve elements outside the body. If
you are making a bed, then the pillows and blankets are part of the plant. If
you are speaking to a group of people, then they are part of the plant. Given
this complexity, there may be many factors that could alter and reverse
components of ∂e/∂u. For instance, Figure 10C shows how one derivative
map for reaching error transforms when you reach with a handheld stick
rather than a fingertip. So if a controller is to learn to use a tool, it has to
know the derivative map for that tool. Does that mean we need thousands of
maps—one for every size and shape of stick or hammer or screwdriver we
pick up? No. Tools could be represented by elements of the context vector v,
so we do not need multiple maps, just one map that is higher-dimensional
than the one for a tool-free arm. And implicit supervision makes it possible
to learn the map rather than rely on estimates from the genome.

8 Conclusion

This theory boils down to three points, with different degrees of experimen-
tal support. First, we claim that at least some sensorimotor systems must
deduce the sensitivity derivative matrix relating e and u. The main evidence
is that some systems recover when that relation changes so as to reverse
∂L/∂u (Stratton, 1897; Ewert, 1930; Sperry, 1945; Missiuro & Kozlowski,
1963; Vera et al., 1975; Leffert & Meister, 1976; Yumiya et al., 1979; Brinkman
et al., 1983; Sugita, 1996). Further support comes from the arguments in
sections 7.1 and 7.2 that fast motor learning and tool use suggest detailed
knowledge of sensitivity derivatives.

Second, we claim that sensitivity is transmitted by action potentials,
and here the evidence is that studies of neural data flow have revealed
no alternative. If it turned out that rapid weight transport were available
after all, then the motivation for this claim would vanish, but all known
mechanisms are far too slow (Rolls & Deco, 2002; Oztas, 2003).

Third, we have proposed three mechanisms for creating the sensitivity
signal—command perturbation and two variants of implicit supervision—
and argued for the error-based version of implicit supervision. Here the
evidence shows that the mechanisms are plausible. For instance, all the oper-
ations in Figure 5, including multiplication and differentiation, can be done
with neurons (Koch, 1999; Tripp & Eliasmith, 2006), and the mechanism is



Sensitivity Derivatives for Flexible Sensorimotor Learning 2107

consistent with many neural circuits; for example, ϕ could be carried on
parallel fibers, W could be synapses onto Purkinje cells, and ż could be
inputs to deep cerebellar nuclei or brainstem. As for neural activity, each
method is compatible with many different patterns: any given system can
be controlled using many different e’s, z’s, and ϕ‘s, and all of these signals
can be distributed across multiple neurons.

The theory makes further predictions besides the ones discussed earlier.
It implies that learning should be slower when a change in sensitivity re-
verses the sign of some component of ∂L/∂u than when sensitivity changes
by the same amount without causing a sign change. It predicts that when a
component of ∂L/∂u changes sign, the system should show an initial phase
where control worsens, or at least fails to improve, as in Figure 6A. In sub-
jects who are thoroughly adapted to reversing goggles or transpositions,
the theory predicts that their rapid, reflexive error corrections should also
be appropriately reversed. And the theory says that if learning is based on
equation 5.8, then it should be blocked when sensory feedback is altered so
as to hide or distort information about ė while still accurately reporting e.

In short, we have identified two principles of sensorimotor learning:
that it deduces the relation between neural commands and performance—
the sensitivity derivative matrix—and that it represents this quantity in
transmissible form, in neural firing rather than in synaptic weights. To
accomplish these things, we have described a mechanism, called implicit
supervision, that is biologically plausible, fast, robust, and general. It applies
to linear and nonlinear systems of any dimension or order, so long as they
fulfill equations 2.1 to 2.3, and it could be applied whenever the brain needs
to learn a computation for which it has no supervisor.

Appendix A: Generality

The framework defined in equations 2.1 to 2.3 is very general, though some
sensorimotor control systems fit in only after they are recast into a form
in which relative degree is zero. We can explain the idea of relative degree
using the example of saccadic eye movements. Here, as in the VOR, the
plant equation is

ẋ = u − κx
ρ

, (A.1)

where x is eye position. The aim is to bring the eye to some target angle x∗.
So a reasonable definition of the error might be

e = x − x∗. (A.2)

However, e so defined is not a function of u, because neither x nor x∗ is a
function of u. But ẋ is, as equation A.1 shows. And x is the time integral of



2108 M. Abdelghani, T. Lillicrap, and D. Tweed

ẋ, so in this sense, there is one integration standing between u and x, and
therefore between u and e. We say this control system is of relative degree 1.
If instead it were the acceleration ë that was a function of u, then the system
would be of relative degree 2, and so on. By the same reasoning, the VOR
is of relative degree zero. Only systems of relative degree zero make e a
function of u, and therefore only such systems fulfill equation 2.2. But most
sensorimotor control tasks are convertible to a form where relative degree
is zero.

To see how this conversion can work and can be useful, notice that
an error signal like the one in equation A.2 would not give an adaptive
controller much moment-to-moment guidance; it would not tell it how to
adjust its control law, precisely because the equation for e does not involve
u. For saccade adaptation, a more useful error might be something like

e = ẋ + (x − x∗) = u − κx
ρ

+ (x − x∗). (A.3)

With this e, the system is now of relative degree zero. And if the controller
adjusts its commands so as to zero e, then saccades will obey

ẋ = x∗ − x, (A.4)

which will carry the eye smoothly to its target angle. In reality, the equation
relating saccadic eye velocity to eye position error x∗ – x is nonlinear, so
a more realistic error might be something like e = ẋ + ϕ(x – x∗), where
ϕ is a sigmoid nonlinearity, but these details are outside the scope of this
letter. Our point here is simply that a higher-degree control problem can be
converted to relative degree zero.

Appendix B: Two-Joint Arm

In Figures 6B through 9, we use a two-joint arm to show that implicit
supervision still works when the plant equation is nonlinear, the state and
command are vectors rather than scalars, the order of the dynamics exceeds
1, and (in Figure 8) the system is kinematically redundant. This arm “has
all the nonlinear effects common to general robotic manipulators” (Lewis,
Jagannathan, & Yeşildirek, 1999). It is simpler than a real arm, most notably
in that its motor command u is just two-dimensional and determines joint
torques directly rather than via the nonlinear dynamics of muscles, but its
mechanics are accurate, reflecting the fact that the torque at each joint affects



Sensitivity Derivatives for Flexible Sensorimotor Learning 2109

the motion also at the other joint. Its plant equation is

[
ẍ1

ẍ2

]
=




5
3

+ c2
1
3

+ c2

2
1
3

+ c2

2
1
3




−1([
u1

u2

]
−1

2

[
(1 − s2 ẋ2) −s2(ẋ1 + ẋ2)

s2 ẋ1 1

]

×
[

ẋ1

ẋ2

]
− 1

2

[
x1

x2

])
, (B.1)

where x1 and x2 are shoulder and elbow angles and c2 and s2 are the cosine
and sine of the elbow angle. To simulate muscle transposition in Figure
6B, we reverse the polarities of both joint torques; in the plant equation,
we replace u by –u. Performance error is e = p̈ + 2 ṗ + p, where p is the
position error, x – x∗, and x∗ is the vector of target joint angles. The context
and z vectors are v = (x, ẋ, x∗) and z = (x, ẋ, x∗, u), and ϕ(z) is computed as
in equation 5.4, with fixed weights w f drawn from a uniform distribution of
mean 0 and standard deviation 0.125 (1 divided by the number of elements
in z). This plant model can work together with several kinds of controllers.
The one in Figures 6B through 9 computes its command as a linear function
of its own feature vector ϕu and adjusts its weight matrix Wu by NLMS,


wu
i j = −η

Luiϕ
u
j L

‖Lu‖2‖ϕu‖2 , (B.2)

where Lui is the ith component of an estimate of ∂L/∂u computed from the
plant model’s 〈∂e/∂u〉.

Acknowledgments

For their comments we thank K. Beykirch, D. Broussard, J. Butler, L. Chinta
Venkataswararao, A. Coderre, K. Fortney, D. Henriques, I. Kurtzer, M. Mag-
giore, K. Norwich, J. Peters, A. Pruszynski, S. Scott, D. Tomlinson, and M.
Wojtowicz. This work was funded by the Canadian Institutes of Health
Research.

References

Ackley, D., Hinton, G. E., & Sejnowski, T. (1985). A learning algorithm for Boltzmann
machines. Cog. Sci., 9, 147–169.

Åström, K. J., & Wittenmark, B. (1995). Adaptive control. Reading, MA: Addison-
Wesley.

Brinkman, C., Porter, R., & Norman, J. (1983). Plasticity of motor behavior in monkeys
with crossed forelimb nerves. Science, 220, 438–440.

Callier, F. M., & Desoer, C. A. (1991) Linear system theory. New York: Springer.



2110 M. Abdelghani, T. Lillicrap, and D. Tweed

Dean, P., Porrill, J., & Stone, J. V. (2002). Decorrelation control by the cerebellum
achieves oculomotor plant compensation in simulated vestibulo-ocular reflex.
Proc. R. Soc. B, 269, 1895–1904.

Ewert, P. (1930). A study of the effect of inverted retinal stimulation upon spatially
coordinated behavior. Genet. Psychol. Monogr., 7, 177–363.

Forssberg, H., & Svatengren, G. (1983). Hardwired locomotor network in cat re-
vealed by a retained motor pattern for gastrocnemius after muscle transposition.
Neurosci. Lett., 41, 283–288.

Gardner, W. A. (1984). Learning characteristics of stochastic-gradient-descent algo-
rithms: A general study, analysis, and critique. Signal Processing, 6, 113–133.

Haykin, S. (2002). Adaptive filter theory. Upper Saddle River, NJ: Prentice Hall.
Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep

belief nets. Neural Comput., 18, 1527–1554.
Jordan, M. I., & Rumelhart, D. E. (1992). Forward models: Supervised learning with

a distal teacher. Cog. Sci., 16, 307–354.
Kawato, M., & Gomi, H. (1992). The cerebellum and VOR/OKR learning models.

TINS, 15, 445–453.
Koch, C. (1999). Biophysics of computation. New York: Oxford University Press.
Leffert, R. D., & Meister, M. (1976). Patterns of neuromuscular activity following

tendon transfer in the upper limb: A preliminary study. J. Hand Surg., 1, 181–189.
Lewis, F. L., Jagannathan, S., & Yeşildirek, A. (1999). Neural network control of robot

manipulators and nonlinear systems. London: Taylor and Francis.
Mazzoni, P., Andersen, R. A., & Jordan, M. I. (1991). A more biologically plausible

learning rule for neural networks. Proc. Natl. Acad. Sci. USA, 88, 4433–4437.
Missiuro, W., & Kozlowski, S. (1963). Investigation on adaptive changes in reciprocal

innervation of muscles. Arch. Phys. Med. Rehabil., 44, 37–41.
Nagumo, J., & Noda, A. (1967). A learning method for system identification. IEEE

Trans. Automat. Contr., AC-12, 283–287.
Oztas, E. (2003). Neuronal tracing. Neuroanatomy, 2, 2–5.
Porrill, J., Dean, P., & Stone, J. V. (2004). Recurrent cerebellar architecture solves the

motor-error problem. Proc. R. Soc. B, 271, 789–796.
Rolls, E. T., & Deco, G. (2002). Computational neuroscience of vision. New York: Oxford

University Press.
Shibata, T., Tabata, H., Schaal, S., & Kawato, M. (2005). A model of smooth pursuit in

primates based on learning the target dynamics. Neural Networks, 18(3), 213–224.
Sperry, R. W. (1943). Effect of 180 degree rotation of the retinal field on visuomotor

coordination. J. Exp. Zool., 92, 263–279.
Sperry, R. W. (1945). The problem of central nervous reorganization after nerve

regeneration and muscle transposition. Q. Rev. Biol., 20(4), 311–369.
Stratton, G. M. (1897). Vision without inversion of the retinal image. Psychol. Rev., 4,

341–360, 463–481.
Sugita, Y. (1996). Global plasticity in adult visual cortex following reversal of visual

input. Nature, 380, 523–526.
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. Cambridge, MA: MIT

Press.
Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor

coordination. Nat. Neurosci., 5, 1226–1235.



Sensitivity Derivatives for Flexible Sensorimotor Learning 2111

Tripp, B. Y., & Eliasmith, C. (2006). Comparison of neural circuits that estimate tem-
poral derivatives. COSYNE 2006 abstracts. Available online at http://cosyne.org/
program06/cosyne06 abstractbook final.pdf.

Tweed, D., Misslisch, H., & Fetter, M. (1994). Testing models of the oculomotor
velocity-to-position transformation. J. Neurophysiol., 72, 1425–1429.

Vera, C. L., Lewin, M. G., Kasa, J. C., & Calderon, M. T. D. (1975). Central functional
changes after facial-spinal-accessory anastomosis in man and facial-hypoglossal
anastomosis in the cat. J. Neurosurg., 43, 181–191.

Werfel, J., Xie, X., & Seung, H. S. (2005). Learning curves for stochastic gradient
descent in linear feedforward networks. Neural Comput., 17, 2699–2718.

Yamamoto, K., Kobayashi, Y., Takemura, A., Kawano, K., & Kawato, M. (2002). Com-
putational studies on acquisition and adaptation of ocular following responses
based on cerebellar synaptic plasticity. J. Neurophysiol., 87, 1554–1571.

Yumiya, H., Larsen, K. D., & Asanuma, H. (1979). Motor readjustment and input-
output relationship of motor cortex following crossconnection of forearm muscles
in cats. Brain Res., 177, 566–570.

Received April 2, 2007; accepted December 13, 2007.


